

## Gypsum (Calcium Sulfate Dihydrate)

## Introduction

Calcium sulfate materials (gypsum) are popular materials used in several building applications. When calcium sulfate halfhydrate is mixed with water, it re-forms into gypsum (dihydrate), initally as a paste but enventually hardening into a solid. The structure consists of sheets of  $Ca_2$ + and  $So_4$  2- ions held together by hydrogen bonds of the water molecules. The grip between these sheets can easily be

broken, so gypsum is fairly soft. Gysum is used as a building material similar to mortar or cement. Like those materials, plaster starts as a dry powder that is mixed with water to form a paste which then hardens. Unlike those materials, plaster remains quite soft after drying, and can easily be manipulated with metal tools or even sandpaper. These characteristics make plaster suitable for a finishing rather than a load-bearing material.



## **Test Conditions**

| Temperature range: | RT1500°C           |
|--------------------|--------------------|
| Heating rate:      | 20 K/min           |
| Atmosphere:        | Argon at 60 ml/min |
| Sample mass:       | 38.68 mg           |
| Crucible:          | Pt with lid        |
| Sensor:            | DSC type S         |

## **Test Results**

Between 100 and 300°C, the double-step dehydration of the calcium sulfate-dihydrate occurred. In the first step, 1.5

of 2 water molecules were released from the system and half-hydrate was formed. In the second, the half-hydrate dehydrates further on and forms anhydrate. Starting at 348°C, the anhydrate converts to  $\beta$ -calcium sulfate (exothermal effect). At 1219°C, the  $\beta$ -calcium sulfate converts to  $\alpha$ -calcium sulfate, clearly visible as a sharp endothermal effect in the DSC curve. At temperatures above 1250°C, a further mass loss can be seen. This mass loss refers to the sulfate decomposition. Calcium sulfate converts into calcium oxide. The endothermal peak at 1380°C is due to melting of an eutectic mixture of calcium sulfate and calcium oxide.



