APPLICATION SHEET

Polymers · Adhesives Photo-DSC 204 **F1** Phoenix®

One-Component Epoxy Resin Delo-Katiobond KB 554

Introduction

Epoxy or polyepoxide is a thermosetting epoxide polymer that generally cures when mixed with a catalyzing agent or "hardener". Most common epoxy resins are produced from a reaction between epichlorohydrin and bisphenol-A. KB 554 is a resin that is ultraviolet-curing. The fluorescent resin is activated with UV light or visible light between 400 to 500 nm. A cationic curing mechanism allows the adhesive to cure after assembling components. A higher temperature influences the behavior for this dual curing reaction. Adhesives are used for bonding metals, glass or polymers especially for stress-equalizing bondings or sealings. This test was carried out at three different constant temperatures to analyze the influence of the activation temperature on the reaction of the adhesive.

Test Conditions

Temperature range: Heating/cooling rates: Atmosphere: Sample mass: Crucible: UV device: Radiation time: 30°C/50°C/70°C isothermal Nitrogen at 50 ml/min approx. 8.5 mg open Al Delolux 04 60 s

Test Results

Tests were carried out at three different temperatures (30, 50 and 70°C) to evaluate the influence of temperature on the reaction behavior of the adhesive. After reaching the measurement time, the UV light source was activated for 60 seconds causing a light temperature increase (\sim 5 K) of the sample. As can be seen from the plot, an increasing reaction enthalpy was detected at higher temperatures. At 30°C, 193 J/g were released during the UV light-induced curing process. At 70°C, the reaction enthalpy is significantly higher (390 J/g).

