Das Porträt

Abb. 1:
Dr. J. Henderson während der Vorbereitung einer Messung an einer NETZSCH-STA 409

In der September Ausgabe '91 berichteten wir vor Weggang von Dr. J. Henderson, des Leiters unseres Applikationslabors. Er verließ im Oktober '91 NETZSCH-Gerätebau, um seine neue Position als Direktor des Thermophysical Properties Research Laboratory aufzunehmen. Von dort aus gibt er uns jetzt einen Einblick in seine Arbeit.

Das TPRL gehört zur School of Mechanical Engineering an der Purdue Universität, West Lafayette, Indiana, USA. Zu seinen Mitarbeitern zählen zwei leitende Wissenschaftler, ein Lehrbeauftragter, ein Elektroingenieur und mehrere Programmierer. Auf einer Fläche von $409 \mathrm{~m}^{2}$ garantiert die vollständig auf Computerbasis aufgebaute Laborausrüstung (Datenanalyse und Dokumentation) ein Maximum an Leistungsfähigkeit und Genauigkeit. Das Arbeitsgebiet des TPRL ist die Untersuchung thermophysikalischer

Stoffeigenschaften (mit Schwerpunkt Festkörper) über einen weiten Temperaturbereich und kann in zwei klar voneinander abgegrenzte Kategorien eingeteilt werden:

- Grundlagenstudien über Verhalten und Eigenschaften von Materialien mit den entsprechenden Meßtechniken
- die Erforschung von praxisrelevanten Materialeigenschaften in Zusammenarbeit mit verschiedenen Organisationen.

Für diese Aufgaben werden neben kommerziell erhältlichen Geräten zur thermogravimetrischen Analyse (TG), dynamischen Differenzkalorimetrie (DSC) und Dilatometrie auch mehrere Eigenentwick|ungen verwendet, so z. B. eine Multifunktionsanlage zur Messung von 12 verschiedenen thermischen Eigenschaften elektrisch leitender Materialien oder eine Laserflashapparatur, bei deren Entwicklung TPRL eine führende Position in der Welt einnahm.

Das Ziel der bereits angesprochenen Grundlagenforschung ist das bessere Verständnis der Wirkungsbeziehung zwischen Mikrostruktur und thermophysikalischen Eigenschaften makroskopischer Probenkörper und damit auch der Wärmeflußmechanismen bei einer Vielzahl von derzeitig interessanten Materialien.

Dr. J. Henderson

Analytica '92

Zum 13. Mal fand vom
5. - 8. Mai 1992 die Internationale Fachmesse für Biochemische und Instrumentelle Analytik in München statt.

Trotz der zu diesem Zeitpunkt stattfindenden Streiks im Flugund Nahverkehr kamen 36000 Fachbesucher aus 75 Staaten zu diesem Weltmarkt der Analysentechnik. Mit dem Produktangebot von 945 Ausstellern und 65 zusätzlichen Firmen konstatierte man die in der Geschichte der Analytica bislang größte Ausdehnung auf $56200 \mathrm{~m}^{2}$ Ausstellungsfläche. Der Verlauf der Messe zeigte die besonders dynamische Entwicklung der Analytik in Forschung und Industrie mit den Schwerpunkten Umweltanalytik und Qualitätskontrolle.

NETZSCH-Gerätebau war auch dieses Mal auf $48 \mathrm{~m}^{2}$ Standfläche vertreten.
Neben Verbesserungen und Weiterentwicklungen bewährter TA-Instrumente wurden erstmalig die neuentwickelte NETZSCH-DMA 242 (Dyna-misch-mechanische AnalyseApparatur) sowie die Dampfdruckapparatur VPA 434 vorgestellt.
Die nächste Analytica wird vom 19.-22. April 1994 wieder in München stattfinden.

Inhalt

```
Das Porträt
Analytica '92
Wir stellen vor:
NETZSCH-DMA 242
NETZSCH-VPA 434
\(\square\) Kunststoffrecycling ein Anwendungsgebiet für DSC?
- Rund um TA
Messen, Symposien
by the way
```


Wir stellen vor:

NETZSCH-DMA 242: Dynamisch-mechanische Analyse für Qualitätssicherung, Forschung und Entwicklung

Ideal-elastisches Verhalten, d. h., die voll ständige und ver die Ausgangsgestalt nach Beendigung der Einwirkung einer Kraft, gibt es streng genommen nur in der Theorie. In der Praxis zeigen alle Materialien auf Grund der inneren Reibung eine mehr hängigkeit der Materialkennwerte, wie z. B. der Moduln, von der Beanspruchungszeit oder bei oszillierender Krafteinwirkung (dynamisches Verfahren) von der Frequenz. Dieses Verhalten bezeich

Bei der dynamisch-mechanischen Analyse werden die mechanischen Eigenschaften von Proben unterschiedlich ster Art und Konsisten quantitativ erfaß̉. elastischen Verhalten eine Stoffes zeigen mit hoher Empfindlichkeit Übergänge wie Glasübergangsbereiche und sekundäre Relaxationsvorgänge auf, die mit DSC nicht sichtbar gemacht werden konnen, d.h., die DMA mationen über Aufbau und Struktur von Polymeren.
der NETZSCH-DMA 242 (Abb. 2) ist diese Meß methode mit hoher Präzision feld umgesetzt worden Abhängig vom Deformations modus der Probe (ein- und weiarmige Biegung, Drei punktbiegung, Zug, Scherung Kompression und Penetrasufen, wählbar zwischen 0,01 and 100 Hz , ein Modulbereich (E') von 10^{-3} bis $10^{6} \mathrm{MPa}$ erschließen
Weitere technische Charak teristika sind u. a.:

- Arbeitsbereich von $-150^{\circ} \mathrm{C}$ bis $600^{\circ} \mathrm{C}$
- Einsatz von Proben mit bis zu 60 mm Länge
- minimaler Temperaturgradient im Probenraum
- Schwingungsanalyse durch dadurch hohes Signal Rausch Verhältnis

Einen wesentlichen Beitrag zur Bedienerfreundlichkeit des Gerätes leistet auch die MS-Windows ${ }^{\text {® }}$ völlig neu kon zipierte multitaskingfähige Software

Abb. 2: NETZSCH-DMA 242

Neben einer temperatur-

 zeit- und frequenzabhängigen größen Speichermodul E Verlustmodul $\mathrm{E}^{\prime \prime}$ und Verlus faktor $\tan \delta$ lassen sich mehrere frequenzabhängige Meßkurven zu einer soge nannten Masterkurve überlagern. Dies ist die Voraus-setzung für die Anwendung der Williams-Landel-FerryGleichung (WLF-Beziehung)

Anknüpfend an die bereits angesprochenen Anwen-
dungsmöglichkeiten der DMA auf dem Polymersektor, zeigt Abbildung 3 eine Messung an einer weichen NRGummimischung der Shore A-Härte 35 (Heizrate: $5 \mathrm{~K} / \mathrm{min}$, einarmiger Biegemodus, Frequenz: 1 Hz). Da bis jetzt noch zur Auswertung der Glasumwandlungstemperatur exi-

Abb. 3
mit der zu Frequenzen weit außerhalb des Meßbereiches extrapoliert werden kann.
Des weiteren hat der Nutzer die Möglichkeit, über die Auftragung des Maximum der tan δ-Kurven in Abhän gigkeit von der reziproken absoluten Temperatur, Aktivierungsenergie eines
extrapolierte Onset-Temperatur des Speichermoduls E' oder über die Peakmaxima von Verlustmodul E"

Wie in vergleichenden DSC Messungen festgestelit werden konnte, lassen sich in den meisten Fällen Korrelationen für die extrapolierte OnsetTemperatur des Speichermo duls leicht ableiten.

Vollautomatische Dampfdruckbestimmung im Bereich zwischen 10^{-6} und 10^{4} Pascal mit dem VPA 434

Bei den bisher angewandten Damptdruckmethoden konnuntersucht werden. n ökologischer Hinsicht interessanter sind jedoch Messungen von Gemischen und Verbindungen in unter und verbindungen in
schiedlichen Matrizes.

Gerade in diesem Bereich Gerade in diesem Bereich stimmung nach der Strömungsmethode, auch als Gassättigungsmethode be-
eichnet die in dem von NETZSCH in Zusammenarbei mit dem Forschungszentrum ur Umwelt und Gesundheit Analyzer 434 (Lizenz Geigy) verwirklicht ist, neue Möglichkeiten
Ein Inertgasstrom, in der Regel Stickstoff, wird in einem Ofen nit konstantem Temperatur profil langsam mit dem Probenmaterial angereichert und dem Passieren einer
zwischengeschalteten Sammelstufe mit einem Gaschro matographen quantitativ analysiert.

Auf Grund der geringen Substanzmengen (0,2 bis 500 mg) können auch toxische Ver bindungen relativ einf vermessen werden De Aufnahme einer kompletvollautomatisch erfolgt, dauert ca. 1 bis 2 Tage.

Kunststoffrecycling - ein Anwendungsgebiet für DSC?

Ausgehend von der seit einigen Jahren geführten Umder kunststoffherstellenden und -verarbeitenden Industrie verstärkt Anstrengungen unternommen, Neuware durch Regranulat zu ersetzen. Besonders im Falle von Kunst stoff-Spezialteilen, wie sie eingesetzt werden, stellt sich dabei die Frage, welchen Einfluß derartige Recyclingzusätze auf die Leistungsparameter des Materials haben
und mit welchen Mathoden dies überprüft werden

Um abzuklären, inwieweit die Thermische Analyse eine Entscheidungshilfe bietet, wurden im Applikationslabor von NETZSCH-Gerätebau ver schiedene DSC-Messungen davon zeigen die Abbildungen 4 und 5 .
Ein Spritzgußteil aus PA 6/30\% Glasfaser (teilkristalliner
Thermoplast) ohne, mit 25\%
und mit 45% Recyclinganteil
wurde hinsichtlich seines Kristallinitätsgrades und seiner zu unkenne daß mit zunehmendem Recyc linganteil die extrapolierte Onset-Temperatur des Krista lisationspeaks zu höheren Temperaturen hin verschoben Kristallisationswärme ab

Ähnliche Unterscheidungsmöglichkeiten ergeben sich auch im Oxidationsexperiment.
Die Tangentensteigung und
damit die Oxidationsgeschwindigkeit nimmt im gedem Recyclinganteil zu.

Mit diesem Ergebnis kann die in der Uberschrift gestellte Frage eindeutig mit "Ja" antwortet werden.

Abb. 4:
Vergleich der Kristallisationspeaks von teilkristallinen Polymere

Abb. 5:
Vergleich der Oxidationsbeständigkeiten
(verwendet wurden dieselben Proben wie in Abb. 4)

Rund um TA
Im WS 1988/89 startete als neugegründete Abteilung der Fachhochschule Furtwangen der Fachbereich Werkstoffund Oberflächentechnik in Villingen-Schwenningen.
Der Lehrstuhlinhaber ist Herr Prof. Dr. Briehl, von September '85 bis Februar '88 Leiter der Abteilung "Schulung" bei NETZSCH-Gerätebau in Selb.

Die Fachhochschule hat sich zum Ziel gesetzt, in den Ferti-gungs-, Elektrotechnik-, Elek-tronik- und Werkstoffprüflabors Werkstoffe aus den Bereichen Metalle, Kunststoffe, Keramiken, Gläser und Verbundwerkstoffe zu untersuchen.

Bei der Qualitätskontrolle von Roh- und Werkstoffen kommt den thermischen Analyseverfahren eine besondere Bedeutung zu.

Erste grundsätzliche Anwendungsmöglichkeiten der Differenzthermoanalyse (DTA) erfahren die Studenten bereits im Werkstoffchemiepraktikum, in dem die zu Schulungszwecken geeignete NETZSCH DTA 404 P eingesetzt wird.

Thermomechanische Untersuchungen an keramischen Prüfkörpern, Metallen und Kunststoffen werden mit dem NETZSCH-Dilatometer 402 ES vorgenommen. Auch diese Versuche sind während des Werkstoffchemiepraktikums obligatorisch.

Vertiefende Experimente an Werkstoffen mittels Thermogravimetrie (TG) und Dynamischer Differenzkalorimetrie, (DSC) können in Kleingruppen in Form von Projektstudien oder natürlich auch im Rahmen von Diplomarbei-
ten durchgeführt werden. Hier hat sich die hochempfindliche Simultan-Thermo-Analyseapparatur NETZSCH STA 409 bestens bewährt.

Prof. Dr. Briehl

Messen, Symposien

INSA LABO

K'92

8th SIMCER -
Internationales
Keramiksymposium
MAC

PITTCON '93
20. 10. - 22. 10. 1992 Villeurbanne/Frankreich
29. 10. -05.11. 1992 Düsseldorf/Deutschland
10.11.-12.11. 1992

Rimini/Italien
24. 11. - 28. 11. 1992 Mailand/Italien
08.03. - 12.03. 1993 Atlanta/USA

NETZSCH-Gerätebau GmbH ist auf diesen Veranstaltungen mit Exponaten der neuesten Geräteentwicklungen vertreten. Die oben aufgeführten Messen und Symposien sind nur eine Auswahl.

NETZSCH-TA-Workshops

in Deutschland:

25.11 .92	Hanau	DSC 200
26.11 .92	Köln	DSC 200
01.12 .92	Regensburg	DSC 200
02.12 .92	München	DSC 200
08.12 .92	Hannover	DSC 200
09.12 .92	Hannover	DSC 200
10.12 .92	Leipzig	DSC 200
15.12 .92	Stuttgart	DSC 200
02.03 .93	Selb	DSC 200
03.03 .93	Selb	TG 209
04.03 .93	Selb	DMA 242
09.03 .93	Konstanz	DSC 200

in Europa:

Frankreich
Kalenderwoche 49/92
Kalenderwoche 06/93
Kalenderwoche 11/93
Kalenderwoche 16/93

Großbritannien
Italien
Für Details wenden Sie sich bitte direkt an uns.

Holland

