SOFTWARE INNOVATI 21122212 21122122 2112122 2112122 2112211 2112211 2112211 2112211 2112211 2112211 2112211 2112211 2112211 2112 ETTTE THE CONTRACT ENTE ENTENDIO ONDONI DINDIDO DINDON DINDIDO DIN ## First Deviation Points of a Complex Peak (DSC) Dr. Alexander Schindler The international standard ISO 11357-3 [1] describes the "peak initiation temperature T_i and end temperature T_f at which the peak ... begins to deviate from the relatively straight baseline". The evaluation of these temperatures, T_i and T_f – which are different from the well-known extrapolated onset and extrapolated end temperatures (see below) – is available in *Proteus*® Analysis version 9.0 and higher. T_i and T_{ij} which may be called "First Deviation Points", are among the possible results of a Complex Peak evaluation of a DSC peak, as it is shown in the evaluation dialogue (see figure 1). All evaluation results checked are calculated automatically by *Proteus®* Analysis and displayed. The result of the Complex Peak evaluation, in this example a DSC melting peak of indium, can be seen in figure 2. 1 Complex Peak evaluation dialogue in *Proteus** Analysis. The choice of the First Deviation Points, T_i and T_s are highlighted in red. 2 Complex Peak evaluation of an Indium melting peak including T_i and T_f ## SOFTWARE INNOVATION First Deviation Points of a Complex Peak (DSC) The temperature T_i is below the (extrapolated) onset temperature and T_f is above the (extrapolated) end temperature. Both temperatures, T_i and T_f , mark the first significant deviation points of the DSC curve from the baseline of the Complex Peak. Since a Complex Peak evaluation can be created manually, but also applying DSC AutoEvaluation, temperatures T_i and T_f can also be selected among other evaluation results available in the DSC AutoEvaluation Settings (see figure 3). Settings of DSC *AutoEvaluation* in *Proteus** Analysis (in menu Evaluation/AutoEvaluation/Settings). The choice of the First Deviation Points, T_i and T_{μ} is highlighted in red. [1] International Standard ISO 11357-3, 2018-3, Plastics – Differential scanning calorimetry (DSC), Part 3: Determination of temperature and enthalpy of melting and crystallization.