تحديد حالة البطارية
عندما يتعلق الأمر باستخدام وحدة تخزين الطاقة، فإن "مستوى الملء" الحالي لها دائمًا ما يكون ذا أهمية - سواء كان ذلك لتقييم وقت التشغيل المتبقي للهاتف المحمول أو الكمبيوتر المحمول، أو فيما يتعلق بمدى السيارة الكهربائية. على الرغم من أن وقت الشحن قد يلعب دورًا ثانويًا إلى حد ما بالنسبة للهاتف المحمول أو الكمبيوتر المحمول، إلا أنه قد يكون ذا أهمية خاصة في سياق التنقل الكهربائي.
قد يكون وصف الحالة الحالية لوحدة تخزين الطاقة بشكل جيد أكثر صعوبة مما يبدو للوهلة الأولى. من التوضيحات الجيدة للحالة الحالية للمخزن هو نموذج البرميل [1]. وقد سبق وصف هذا النموذج بالتفصيل فيما يتعلق بتدوير خلايا العملة [2]. في ما يلي، سيتم التحقيق في تطور الحرارة أثناء شحن وتفريغ خلايا 18650، أي بطاريات larger بشكل كبير من الخلايا المعدنية.
NETZSCH ARC® 254
جهاز NETZSCH تسريع معدل التسخين الحراري (ARC)الطريقة التي تصف إجراءات اختبار متساوي الحرارة والاختبار المتساوي الحرارة المستخدمة للكشف عن تفاعلات التحلل الطاردة للحرارة.ARC® 254 (الشكل 1) هو مسعر معدل التسارع، وهو جهاز يستخدم عادةً لدراسة ما يسمى بالهروب الحراري للمواد الفردية أو مخاليط التفاعل [3]. ومع ذلك، فيما يتعلق بتدوير البطاريات، يتم استخدام المسعر الحراري تسريع معدل التسخين الحراري (ARC)الطريقة التي تصف إجراءات اختبار متساوي الحرارة والاختبار المتساوي الحرارة المستخدمة للكشف عن تفاعلات التحلل الطاردة للحرارة.ARC® 254 كمُسعر حراري متساوي الحرارة. وتحقيقًا لهذه الغاية، يمكن استخدام إعداد تسريع معدل التسخين الحراري (ARC)الطريقة التي تصف إجراءات اختبار متساوي الحرارة والاختبار المتساوي الحرارة المستخدمة للكشف عن تفاعلات التحلل الطاردة للحرارة.ARC® 254 بطريقة خاصة. بالنسبة لفحوصات السلامة المذكورة أعلاه، فإن غرفة المسعر الفعلي في المسعر الحراري في تسريع معدل التسخين الحراري (ARC)الطريقة التي تصف إجراءات اختبار متساوي الحرارة والاختبار المتساوي الحرارة المستخدمة للكشف عن تفاعلات التحلل الطاردة للحرارة.ARC® 254 محاطة بسخانات مستقلة مختلفة. بالنسبة للفحص المتساوي الحرارة للمراكم، يتم إحاطة هذه السخانات بسخان آخر في المسعر، بحيث يمكن التحكم في درجة حرارة البطارية بشكل مستقل عن المسعر.
18650 خلية
ما يسمى بخلايا 18650 هي خلايا صناعية قياسية في مبيت معدني أسطواني بقطر 18 مم وارتفاع 65.0 مم (الشكل 2).
توضع البطارية في سخان يحيط بالخلية الأسطوانية (الشكل 3) ويتم تثبيتها في غرفة القياس في المسعر.
يتم توصيل البطارية بوحدة التدوير الخارجية (الشكل 4) عبر قابس موصل بسيط من أجل تطبيق التيار والجهد للشحن والتفريغ.
إن الاهتمام بتحديد التوازنات الحرارية للبطاريات أثناء الشحن والتفريغ، على الرغم من أنه من أهم القضايا الحالية، إلا أنه ليس جديدًا تمامًا. على الرغم من أن الإعداد في NETZSCH ARC® 254 الموصوف أدناه يختلف عن القوالب الموجودة في الأدبيات، إلا أن النهج الأساسي مطابق للنهج الذي وصفه هانسن وآخرون في عام 1982 [4].



السخان ثلاثي الأبعاد 3D-VariPhi
وكما سبقت الإشارة إليه، فإن البطارية الأسطوانية محاطة مباشرة بسخان ثلاثي الأبعادVariPhi (5 في الشكل 5). ويجب أن يوفر قدرًا معينًا من الحرارة من أجل الحفاظ على البطارية في درجة حرارة ثابتة، وبالتالي يتطلب قدرًا معينًا من الطاقة. تعتمد الطاقة المطلوبة على عدد من العوامل، ليس أقلها درجة الحرارة المحيطة.
ولإنشاء نظام تحكم طويل بما فيه الكفاية، يتم ضبط السخانات الأخرى في المسعر (2 و6 و9 و10 في الشكل 5) على درجة حرارة منخفضة ثابتة. إذا أدت العمليات النشطة أثناء الشحن والتفريغ في البطارية إلى تغيير درجة حرارة الخلية، فإن مصدر الطاقة للسخان ثلاثي الأبعادVariPhi (5) سيكون قادرًا على الاستجابة على الفور وبالتالي ضمان درجة حرارة ثابتة في البطارية. من الإخراج المسجل للسخان ثلاثي الأبعادVariPhi (5)، بدوره، من الممكن تحديد الحرارة التي تمتصها البطارية أو تطلقها خلال الدورات مباشرة.
نظرًا لأن الطاقة التي يتطلبها السخان ثلاثي الأبعادVariPhi للحفاظ على درجة حرارة البطارية مهمة، يتم تسجيل العلاقة بين طاقة التسخين ودرجة حرارة البطارية في الشكل 6.


تدوير خلية 18650
تم الاحتفاظ بالخلية 18650 التي سيتم فحصها في درجة حرارة ثابتة تبلغ 35 درجة مئوية بواسطة جهاز التسخين ثلاثي الأبعادVariPhi. بعد عملية شحن محددة (قطع 2.5 فولت)، تم شحن بطارية الليثيوم أيون هذه (4.2 فولت، الحد الأدنى 100 مللي أمبير) باستخدام ما يسمى بعملية الشحن CC/CV (تيار ثابت/جهد ثابت). وبعد استراحة لمدة 120 دقيقة، أعقب ذلك تفريغ الشحن. ثم تكررت هاتان العمليتان مرة واحدة. تم تلخيص تيارات الشحن والتفريغ المستخدمة في الجدول 1.
الجدول 1: تيارات الشحن والتفريغ
الشحن | التفريغ | |
1C | 1500 مللي أمبير | 1500 مللي أمبير |
C/2 | 750 مللي أمبير | 750 مللي أمبير |
C/4 | 375 مللي أمبير | 375 مللي أمبير |
يعرف جميع المستخدمين من تجربتهم الخاصة أن حرارة الهواتف المحمولة أو أجهزة الكمبيوتر المحمولة ترتفع أثناء التشغيل المكثف وبالمثل أثناء الشحن. فيما يتعلق بدورة الشحن، تمثل هذه التطورات الحرارية خسائر في الطاقة، لأن جزء الحرارة المنطلق بهذه الطريقة غير متاح للاستخدام الفعلي من قبل وحدة تخزين الطاقة. وبالتالي، يمكن تسجيل كميات الحرارة المكتشفة بواسطة ARC® 254 أثناء الشحن والتفريغ كخسائر من حيث كفاءة الشحن. تظهر نتائج حرارة تفاعل الخلية 18650 كدالة لمعدلات الشحن المختلفة في الأشكال من 7 إلى 9. إذا قورنت طاقة الشحن أو التفريغ المستثمرة مع حرارة التفاعل المقاسة، أي الخسائر، يمكن تحديد كفاءة الدورات الجزئية بشكل مستقل.




الملخص
تم استخدام NETZSCH ARC® 254 لدورة بطارية أسطوانية (18650) عند 35 درجة مئوية بمعدلات شحن مختلفة (1C، C/2، C/4). تتوافق درجات حرارة التفاعل المكتشفة مع الفقد الحراري، مما يسمح بتحديد كفاءة دورات الشحن والتفريغ بشكل مستقل عن بعضها البعض. إذا لم تكن هناك خسائر، فستكون الكفاءة 100%. يتم تلخيص الخسائر التي تم تحديدها من درجات حرارة التفاعل لدورات الشحن والتفريغ، وكذلك لمعدلات الشحن المختلفة، في الشكل 10. من الواضح أنه بالنسبة لمعدلات الشحن المنخفضة (C/4)، تكون الخسائر أقل، وبالتالي تكون الكفاءة أعلى من معدلات الشحن الأعلى (1C).