11.03.2020 by Dr. Shona Marsh

Viscometer or Rheometer – which is best for me?

Deciding whether to purchase either a viscometer or a rheometer is not always straightforward. This guide will take you through the differences and how a rheometer could be more suited for your needs.

What’s the difference?

Typically a viscometer employs a mechanical bearing that limits the speed and torque capabilities of the instrument, whereas a rheometer uses a low friction air bearing. This means a viscometer can be a solution for material, process or production tests that require simple flow measurements on Newtonian materials (where viscosity is independent of shear rate), however the performance of a rheometer allows far greater characterization of flow, deformation and even the TackinessTackiness describes the interaction between 2 layers of identical (autohesion) or different (cohesion) materials in terms of surface stickiness.tackiness of a material (for Newtonian and Non-NewtonianA non-Newtonian fluid is one that exhibits a viscosity that varies as a function of the applied shear rate or shear stress.non-Newtonian materials).
A viscometer can offer portability for field or remote testing. Rheometers, while generally more expensive than viscometers, are more versatile and have a much wider dynamic range of control and measurement parameters.

Measuring Viscosity

Measuring viscosity is the most common application required for a viscometer or rheometer. For most products, the viscosity is required to be high at low shear rates to prevent sedimentation or slumping, but to thin down at higher shear rates to facilitate application or processing. Hence a single viscosity measurement is not sufficient to describe the viscosity of such materials and the viscosity should be measured over a range of shear rates or stresses.
Typically, a viscometer can measure in the range of about 0.1 to 103 s-1 while a rheometer extends the measurement range from 10-6 to 105 s-1. A broader measurement range enables relevant data to be obtained by exposing the sample to conditions that are realistic to the conditions applied during product manufacture or use.
Processes such as sedimentation are best suited to analyze with a rheometer due to its low torque capabilities. High speed control of a rheometer also allows analysis of a very high shear rate process, such as spraying.

ProcessMinimum shear rate (s-1)Maximum shear rate (s-1)ViscometerRheometer
Reverse gravure105106   ✔
Spraying104105   ✔
Blade coat103105  ✔  ✔
Mixing/stirring10103  ✔  ✔
Brushing10103  ✔  ✔
Pumping1103 ✔   ✔
Extrusion1102  ✔  ✔
Curtain coating1102  ✔  ✔
Levelling10-20.1   ✔
Sagging10-20.1   ✔
Sedimentation10-610-2   ✔

Yield stress

After viscosity, yield stress is probably the more routinely measured rheological property because many consumer products gain value from having one.
Yield ContrainteLa Contrainte est définie par un niveau de force appliquée sur un échantillon d’une section bien définie. (Contrainte = force/surface). Les échantillons qui possèdent une section rectangulaire ou circulaire peuvent être comprimés ou étirés. Les matériaux élastiques comme les élastomères peuvent être étirés jusqu’à 5 à 10 fois leur longueur initiale.stress varies as a function of the temperature and timescale during which the stress is applied. Rheometers can provide more relevant Yield StressYield stress is defined as the stress below which no flow occurs; literally behaves like a weak solid at rest and a liquid when yielded.yield stress data than a viscometer by enabling application of the broad range of these methods. Applying a stress ramp is looked upon as the easiest way with a rheometer.

Which is best for me?

The increased versatility and performance make rheometers an excellent tool for research, product and process development, as well as quality control testing. Both viscometers and rheometers are complementary, and it is not uncommon within a single organization to find viscometers used for QC testing on products that have been developed using a rheometer. However, with the versatility and power of the Kinexus software, both R&D and QC measurements (with pass fail criteria), including the option of 21 CFR (for the pharmaceutical industry) can be customized to suit sample type, application and operator.

 Kinexus RangeRosand Range
Measurement Type  
–          Flow Curves (Shear & Extensional Viscosity) ✔ ✔
–          Yield StressYield stress is defined as the stress below which no flow occurs; literally behaves like a weak solid at rest and a liquid when yielded.Yield Stress ✔ 
–          ThixotropyFor most liquids, shear thinning is reversible and the liquids will at some point in time gain their original viscosity when a shearing force is removed.Thixotropy ✔ 
–          Single Shear ✔ ✔
–          Die Swell   ✔
–          Haul Off (Melt Strength)  ✔
–          Stress RelaxationWhen a constant strain is applied to a rubber compound, the force necessary to maintain that strain is not constant but decreases with time; this behavior is known as stress relaxation. The process responsible for stress relaxation can be physical or chemical, and under normal conditions, both will occur at the same time. Relaxation ✔ ✔
–          PVT   ✔
–          Co-Extrusion  ✔
–          Creep ✔ 
–          Amplitude Sweep ✔ 
–          Frequency Sweep ✔ 
–          Single Frequency (with and without temperature ramps and tables) ✔ 
–          UV Curing ✔ 
TackinessTackiness describes the interaction between 2 layers of identical (autohesion) or different (cohesion) materials in terms of surface stickiness.Tackiness & Adhesion ✔ 
Temperature Range-40 – 350 °C5 – 500 °C
Shear Rate Range (dependent on sample)

<<1 x 10-3 to > 50,000 s-1



<1 to > 1 million s-1