# Definition of Thermal Conductivity

Thermal ConductivityThermal conductivity (λ with the unit W/(m•K)) describes the transport of energy – in the form of heat – through a body of mass as the result of a temperature gradient (see fig. 1). According to the second law of thermodynamics, heat always flows in the direction of the lower temperature. Thermal conductivity (λ with the unit W/(m•K)) describes the transport of energy – in the form of heat – through a body of mass as the result of a temperature gradient (see fig. 1). According to the second law of thermodynamics, heat always flows in the direction of the lower temperature.

The relationship between transported heat per unit of time (dQ/dt or heat flow Q) and the temperature gradient (ΔT/Δx) through Area A (the area through which the heat is flowing perpendicularly at a steady rate) is described by the Thermal ConductivityThermal conductivity (λ with the unit W/(m•K)) describes the transport of energy – in the form of heat – through a body of mass as the result of a temperature gradient (see fig. 1). According to the second law of thermodynamics, heat always flows in the direction of the lower temperature.thermal conductivity equation.

Thermal ConductivityThermal conductivity (λ with the unit W/(m•K)) describes the transport of energy – in the form of heat – through a body of mass as the result of a temperature gradient (see fig. 1). According to the second law of thermodynamics, heat always flows in the direction of the lower temperature. Thermal conductivity is thus a material-specific property used for characterizing steady heat transport. It can be calculated using the following equation:

Posters
In the manufacturing and processing of materials, the knowledge of the thermal properties is very important. Check out our posters in order to find the thermal properties of materials at a glance!
more