General Properties
Short Name:
Name:
PA6.10
Polyamide 6.10
Polyamide 6.10 is formed by the condensation of hexamethylene diamine and sebacic acid. Sebacic acid can be industrially made from castor oil. Therefore, polyamide 6.10 is also sometimes called biopolyamide or bio- based polyamide.
Structural Formula
Properties
NETZSCH Measurement
Instrument | DSC 204 F1 Phoenix® |
Sample Mass | 10.50 mg |
IsothermalTests at controlled and constant temperature are called isothermal.Isothermal Phase | 5 min |
Heating/Colling Rates | 10 K/min |
Crucible | Al, pierced lid |
Atmosphere | N2 (50 ml/min) |
Evaluation
The present sample shows a Glass Transition TemperatureThe glass transition is one of the most important properties of amorphous and semi-crystalline materials, e.g., inorganic glasses, amorphous metals, polymers, pharmaceuticals and food ingredients, etc., and describes the temperature region where the mechanical properties of the materials change from hard and brittle to more soft, deformable or rubbery.glass transition at 41°C in the 2nd heating (red), which is relatively low for polyamide 6.10, as well as a broad melting range with a total melting enthalpy of 71 J/g. The structure of the melting peak in the 2nd heating indicates the presence of different crystalline phases. The temperature of the endothermal main peak at 218°C is in the typical range for PA6.10. Immediately before melting, an ExothermicA sample transition or a reaction is exothermic if heat is generated.exothermal Post Crystallization (Cold Crystallization)The post crystallization of semi-crystalline plastics occurs primarily at elevated temperatures and increased molecular mobility above the glass transition.post-crystallization occurred in the 1st heating (blue). The shallow signals between 90°C and approx. 140°C (also 1st heating) could be caused by the release of StressStress is defined as a level of force applied on a sample with a well-defined cross section. (Stress = force/area). Samples having a circular or rectangular cross section can be compressed or stretched. Elastic materials like rubber can be stretched up to 5 to 10 times their original length.stress in the material and/or evaporation of water.