General Properties
Short Name:
Name:
EP
Epoxy resin
Epoxy resins (EP) undergo a polyaddition cross-linking reaction that does not release small molecules. The properties of the resin are strongly dependent on the structure, the degree of cross linking, type and amount of the reinforcement material and the processing procedure.
Structural Formula
Properties
NETZSCH Measurement
Instrument | DSC 204 F1 Phoenix® |
Sample Mass | 13.22 mg |
IsothermalTests at controlled and constant temperature are called isothermal.Isothermal Phase | 5 min |
Heating/Colling Rates | 10 K/min |
Crucible | Al, pierced lid |
Atmosphere | N2 (40 ml/min) |
Evaluation
As an amorphous polymer, this epoxy resin exhibits a Glass Transition TemperatureThe glass transition is one of the most important properties of amorphous and semi-crystalline materials, e.g., inorganic glasses, amorphous metals, polymers, pharmaceuticals and food ingredients, etc., and describes the temperature region where the mechanical properties of the materials change from hard and brittle to more soft, deformable or rubbery.glass transition at 77°C (midpoint) with a Specific Heat Capacity (cp)Heat capacity is a material-specific physical quantity, determined by the amount of heat supplied to specimen, divided by the resulting temperature increase. The specific heat capacity is related to a unit mass of the specimen.specific heat capacity of 0.14 J/(g*K) in the 1st heating (blue) followed by an ExothermicA sample transition or a reaction is exothermic if heat is generated.exothermal effect (peak temperature 174°C), due to post-Curing (Crosslinking Reactions)Literally translated, the term “crosslinking“ means “cross networking”. In the chemical context, it is used for reactions in which molecules are linked together by introducing covalent bonds and forming three-dimensional networks.curing of the resin. As a result of the post-Curing (Crosslinking Reactions)Literally translated, the term “crosslinking“ means “cross networking”. In the chemical context, it is used for reactions in which molecules are linked together by introducing covalent bonds and forming three-dimensional networks.curing, the Glass Transition TemperatureThe glass transition is one of the most important properties of amorphous and semi-crystalline materials, e.g., inorganic glasses, amorphous metals, polymers, pharmaceuticals and food ingredients, etc., and describes the temperature region where the mechanical properties of the materials change from hard and brittle to more soft, deformable or rubbery.glass transition temperature in the 2nd heating (red) is shifted to 88°C (midpoint). The step height remains nearly the same. Since no further ExothermicA sample transition or a reaction is exothermic if heat is generated.exothermal effect occurs, it can be assumed that the epoxy resin was entirely cured during the 1st heating. Both the ExothermicA sample transition or a reaction is exothermic if heat is generated.exothermal eff ect and the position (and shift) of the Glass Transition TemperatureThe glass transition is one of the most important properties of amorphous and semi-crystalline materials, e.g., inorganic glasses, amorphous metals, polymers, pharmaceuticals and food ingredients, etc., and describes the temperature region where the mechanical properties of the materials change from hard and brittle to more soft, deformable or rubbery.glass transition temperature to higher values can be interpreted as an evidence for the degree of Curing (Crosslinking Reactions)Literally translated, the term “crosslinking“ means “cross networking”. In the chemical context, it is used for reactions in which molecules are linked together by introducing covalent bonds and forming three-dimensional networks.curing of the material.