Einleitung
Vorliegendes Application Note beinhaltet die Analyse des Materials BiSeTe mit der Elektrische Leitfähigkeit (SBA)Die elektrische Leitfähigkeit ist definiert als eine physikalische Größe des elektrischen Ladungstransports in einem Material. Die SI-Einheit ist Siemens pro Meter [S/m], benannt nach Werner von Siemens. Sie wird üblicherweise durch die griechischen Buchstaben σ (Sigma), κ (Kappa) oder γ (Gamma) dargestellt.SBA 458 Nemesis® (Abbildung 1). Die Messung des Seebeck-Koeffizienten sowie der elektrischen Leitfähigkeit von BiSeTe ist mit hoher Reproduzierbarkeit und Messgenauigkeit mit der Elektrische Leitfähigkeit (SBA)Die elektrische Leitfähigkeit ist definiert als eine physikalische Größe des elektrischen Ladungstransports in einem Material. Die SI-Einheit ist Siemens pro Meter [S/m], benannt nach Werner von Siemens. Sie wird üblicherweise durch die griechischen Buchstaben σ (Sigma), κ (Kappa) oder γ (Gamma) dargestellt.SBA 458 möglich. Dies belegen zahlreiche Messbeispiele in den folgenden Kapiteln. Außerdem werden hilfreiche Empfehlungen für die Einstellung der Messparameter gegeben.
Setup der SBA 458 Nemesis®
Mit der SBA 458 Nemesis® können simultan der Seebeck- Koeffizient und die elektrische Leifähigkeit gemessen werden. Abbildung 2 zeigt den schematischen Aufbau der SBA 458. Die Probe liegt horizontal auf der Probenauflage. Links und rechts befinden sich Heizer in der keramischen Probenauflage, mit der ein Temperaturgradient in beide Probenrichtungen erzeugt werden kann. An der Probenunterseite sind die Thermoelemente lokalisiert. Diese messen die – durch den Temperaturgradienten – erzeugte Thermospannung. Daraus kann der Seebeck-Koeffizient berechnet werden.
Neben den Thermoelementen befinden sich an der Probenunterseite Stromkontakte, mit deren Hilfe Strom in die Probe eingeprägt wird. Die resultierende SpannungSpannung ist definiert als Kraftniveau, das auf eine Probe mit definiertem Querschnitt aufgebracht wird (Spannung = Kraft/Fläche). Proben mit runden oder rechteckigen Querschnitten können komprimiert oder gestreckt werden. Elastische Materialien, wie Elastomere, können bis um das 5- oder 10-fache ihrer ursprünglichen Länge gedehnt werden.Spannung wird mit den Thermoelement-Schenkeln gemessen. Daraus kann zusammen mit den von der Probengeometrie abhängigen Korrekturfunktionen die elektrische Leitfähigkeit berechnet werden.
Key Features der SBA 458 Nemesis®
Die SBA 458 Nemesis® weist einige Key Features auf, die im Folgenden kurz angesprochen werden. Für eine ausführliche Beschreibung der einzelnen Punkte steht Ihnen der Vertrieb gerne zur Verfügung.
Plug and measure
Es kann eine Vielzahl an Probengeometrien mit der SBA 458 gemessen werden. Dazu gehören Rundproben, Stabproben, Dünnschichten, Beschichtungen und typische LFA-Proben. Der Probenwechsel erfolgt schnell und unkompliziert. Umständliche Abstandsmessungen oder andere komplizierte Arbeitsschritte entfallen.
Robustes System
Die Mantel-Thermoelemente (Typ K, Inconel-Mantel) verhindern eine Reaktion bzw. Kontamination von Probe und Thermoelement. Weiterhin sind die Thermoelemente und Stromkontakte fixiert. Dadurch sind Positionsänderungen der Thermoelemente und die damit einhergehende Beeinträchtigung der Messung ausgeschlossen. Auch können Thermoelemente und Stromkontakte unkompliziert gewechselt werden.
Quality Check
Es ist sowohl für die Messung der elektrischen Leitfähigkeit als auch für die Bestimmung des Seebeck-Koeffizienten die Durchführung eines Quality Checks möglich. So kann vor Messbeginn und bei jedem Temperaturschritt festgestellt werden, ob der gemessene Wert korrekt ist oder z.B. Kontaktprobleme zwischen Probe und Thermoelemente oder anderes die Messung gegebenenfalls verfälscht haben könnten. Dadurch kann eine hohe Messgenauigkeit erreicht werden.
Eigenschaften und Einsatzgebiete von BiSeTe
Bismuttellurid gehört zu der Gruppe der Telluride. Es handelt sich dabei um ein graues Pulver, dass auch als Bismut(III) tellurid bekannt ist. Es gehört zu den Halbleitern und kann mit Antimon oder Selen legiert werden. Im vorliegenden Fall werden BiSeTe-Proben mit der chemischen Zusammensetzung Bi2Se0,25Te2,75 verwendet. Vorliegende Proben haben eine DichteDie Massen-Dichte ist definiert als Verhältnis zwischen Masse und Volumen.Dichte von 7,8 g/cm³ (Stabproben) bzw. 7,82 g/cm³ (Rundproben) und ist ein Typ N Thermoelektrika.
Abbildung 3 zeigt die Figure of Merit der drei Materialien BiTe, PbTe und SiGe. Dort ist zu erkennen, dass BiTe vorwiegend im unteren Temperaturbereich sein Maximum aufweist und daher dort Anwendung findet. Zum Beispiel wird BiSeTe für die Kühlfunktion mobiler Kühlboxen genutzt.
Messungen an BiSeTe mit der SBA 458
Wiederholpräzision (Repeatability)
Der Seebeck-Koeffizient sowie die elektrische Leitfähigkeit von BiSeTe können mit einer hohen Wiederholpräzision mittels der SBA 458 gemessen werden. Zur Bestimmung der Wiederholpräzision wird eine Probe unter gleichen Umständen, d.h. mit gleichen Messparametern, wiederholt gemessen. Dazu wird die Probe nach jeder Messung entnommen und neu eingelegt. Abbildung 4 zeigt beispielhaft für die BiSeTe-Probe mit den Abmessungen 3 x 1 x15 mm (B x H x L) sieben Messkurven jeweils für den Seebeck-Koeffizienten als auch für die elektrische Leitfähigkeit. Daraus lässt sich eine Wiederholpräzision von ± 2 % bzgl. der Messung des Seebeck-Koeffizienten und ± 1,5 % für die Messung der elektrischen Leitfähigkeit ermitteln. Diese Werte lassen sich durch die Messung anderer BiSeTe- Proben (anderer Geometrien) sowie an weiteren SBA 458- Geräten bestätigen.
Reproduzierbarkeit (Reproducibility)
Mit der SBA 458 ist es möglich, BiSeTe-Proben mit einer hohen Reproduzierbarkeit bzgl. Seebeck-Koeffizient und elektrischer Leitfähigkeit zu messen. Dies gilt sowohl bei Verwendung verschiedener Probengeometrien, einer großen Probenanzahl als auch bei der Messung an verschiedenen SBA 458-Geräten.
Beispielhaft werden dazu zwei BiSeTe-Proben mit unterschiedlicher Geometrie gemessen. Dazu steht eine Stabprobe mit den Abmessungen 3 x 1 x 15 mm (B x H x L) und eine Rundprobe Ø12,5 x 1 mm zur Verfügung. Beide Proben werden jeweils drei Mal gemessen und die Werte des Seebeck-Koeffizienten und der elektrischen Leitfähigkeit verglichen. Es ergibt sich daraus eine Reproduzierbarkeit von jeweils ± 2 % für die Messung des Seebeck-Koeffizienten und ebenso für die elektrische Leitfähigkeit.
Empfehlung geeigneter Messparameter
Alle hier gezeigten Messungen an der SBA 458 wurden unter Stickstoff mit einem Gasfluss von 50 ml/min durchgeführt. Außerdem wurden eine maximale Stromeinprägung von 0,01 A und eine Heizer-SpannungSpannung ist definiert als Kraftniveau, das auf eine Probe mit definiertem Querschnitt aufgebracht wird (Spannung = Kraft/Fläche). Proben mit runden oder rechteckigen Querschnitten können komprimiert oder gestreckt werden. Elastische Materialien, wie Elastomere, können bis um das 5- oder 10-fache ihrer ursprünglichen Länge gedehnt werden.Spannung von 8 V als Messparameter gewählt. Diese Parameter haben sich für die verwendeten Probengeometrien (Stabprobe 3 x 1 x 15 mm, Rundprobe Ø12,5 x 1 mm) als geeignet erwiesen.
Da die Messparameter teilweise abhängig von Probenmaterial und Probenabmessung anzupassen sind, werden im Folgenden einige Tipps und Empfehlungen zur Wahl geeigneter Messparameter gegeben. Dazu gehört die Heizer- Spannung, mit der ein Temperaturgradient in beide Probenrichtungen erzeugt wird. Weiterhin ist ein geeigneter Wert für die maximale Stromeinprägung in die Probe zu wählen, die zur Messung der elektrischen Leitfähigkeit dient. Zudem wird gezeigt, welche Gase für die Messung von BiSeTe-Proben geeignet sind.
Heizer-Spannung
Für eine korrekte Messung des Seebeck-Koeffizienten sollte bei der Auswahl der Heizer-Spannung darauf geachtet werden, dass ein ausreichender Temperaturgradient (Empfehlung: ± Delta T von mind. 3 K) erzeugt wird. Dies kann je nach Probengeometrie etwas variieren. Weitere Kriterien sind nicht zu beachten.
Stromeinprägung
Ähnlich wie bei der Wahl der Heizer-Spannung ist bei der Festlegung der maximalen Stromeinprägung die Probengeometrie zu berücksichtigen. Daher sollte bei der Auswahl eines geeigneten Wertes für die Stromeinprägung auf zwei Aspekte geachtet werden: Einerseits muss eine Erwärmung der Probe durch die Stromeinprägung vermieden werden. Andererseits muss der gewählte Strom so hoch sein, dass eine Messung der Spannung möglich ist. Das lässt sich durch einen Blick auf das Diagramm mit den Einzelwerten in der Software überprüfen. Darin sind die jeweils drei positiven und negativen Stromwerte (je 1/3, 2/3 und 3/3 von Imax) zu sehen und die zugehörigen gemessenen Spannungen. Wenn ein linearer Zusammenhang zwischen dem aufgepräten Strom I und der gemessenen Spannung U erkennbar ist, kann eine sinnvolle elektrische Leitfähigkeit gemessen werden.
Gase
Für die Messung einer BiSeTe-Probe eignet sich jedes in der Spezifikation der SBA 458 zugelassene Gas.
Zusammenfassung
Die Messung des Seebeck-Koeffizienten von BiSeTe kann mit einer Wiederholpräzision von ± 2 % und die Messung der elektrischen Leitfähigkeit mit ± 1,5 % mittels SBA 458 durchgeführt werden.
Die Messung des Seebeck-Koeffizienten sowie der elektrischen Leitfähigkeit von BiSeTe kann mit einer Reproduzierbarkeit von jeweils ± 2 % durchgeführt werden. Dies gilt sowohl für die Verwendung von verschiedenen Probengeometrien, einer großen Probenanzahl als auch bei der Nutzung mehrerer SBA 458-Geräte.