General Properties
Short Name:
Name:
PUR
Polyurethane
Polyurethane (PUR) is a polymer produced from the polyaddition reaction of diols/polyols with di-isocyanates and poly-iso- cyanates to generate a urethane group -NH-CO-O-. Since cross-linking is a polyaddition, it is possible to employ aluminum crucibles with pierced lids.
Structural Formula

Properties
NETZSCH Measurement

Instrument | DSC 204 F1 Phoenix® |
Sample Mass | 18.95 mg |
IsothermalTests at controlled and constant temperature are called isothermal.Isothermal Phase | 5 min |
Heating/Colling Rates | 10 K/min |
Crucible | Al, pierced lid |
Atmosphere | N2 (40 ml/min) |
Evaluation
In the 1st heating, the Glass Transition TemperatureThe glass transition is one of the most important properties of amorphous and semi-crystalline materials, e.g., inorganic glasses, amorphous metals, polymers, pharmaceuticals and food ingredients, etc., and describes the temperature region where the mechanical properties of the materials change from hard and brittle to more soft, deformable or rubbery.glass transition at 107°C (midpoint) was followed by a broad, shallow, ExothermicA sample transition or a reaction is exothermic if heat is generated.exothermal post-Curing (Crosslinking Reactions)Literally translated, the term “crosslinking“ means “cross networking”. In the chemical context, it is used for reactions in which molecules are linked together by introducing covalent bonds and forming three-dimensional networks.curing effect between approx. 120°C and 200°C (peak temperature 167°C). Due to the post-Curing (Crosslinking Reactions)Literally translated, the term “crosslinking“ means “cross networking”. In the chemical context, it is used for reactions in which molecules are linked together by introducing covalent bonds and forming three-dimensional networks.curing, the Glass Transition TemperatureThe glass transition is one of the most important properties of amorphous and semi-crystalline materials, e.g., inorganic glasses, amorphous metals, polymers, pharmaceuticals and food ingredients, etc., and describes the temperature region where the mechanical properties of the materials change from hard and brittle to more soft, deformable or rubbery.glass transition in the 2nd heating (after controlled cooling) was approx. 4 K (midpoint temperature 111°C) higher. The position of the Glass Transition TemperatureThe glass transition is one of the most important properties of amorphous and semi-crystalline materials, e.g., inorganic glasses, amorphous metals, polymers, pharmaceuticals and food ingredients, etc., and describes the temperature region where the mechanical properties of the materials change from hard and brittle to more soft, deformable or rubbery.glass transition temperature is directly related to the degree of Curing (Crosslinking Reactions)Literally translated, the term “crosslinking“ means “cross networking”. In the chemical context, it is used for reactions in which molecules are linked together by introducing covalent bonds and forming three-dimensional networks.curing. The more extensive the post-Curing (Crosslinking Reactions)Literally translated, the term “crosslinking“ means “cross networking”. In the chemical context, it is used for reactions in which molecules are linked together by introducing covalent bonds and forming three-dimensional networks.curing, the more the Glass Transition TemperatureThe glass transition is one of the most important properties of amorphous and semi-crystalline materials, e.g., inorganic glasses, amorphous metals, polymers, pharmaceuticals and food ingredients, etc., and describes the temperature region where the mechanical properties of the materials change from hard and brittle to more soft, deformable or rubbery.glass transition shifts to higher temperatures.