Glossary

Glass Transition Temperatur
ガラス転移点 

ガラス転移は無機ガラス、アモルファス金属、高分子、医薬品成分、食品成分などのアモルファスおよび半結晶物質の重要な特性のひとつであり、ガラス転移点は硬くて脆い材料の機械的特性が、より柔らかく変形しやすい状態やあるいはゴムのような状態に変化する温度域を表します。 

熱可塑性樹脂、熱硬化性樹脂、ゴムなど多くの高分子材料は通常、アモルファス構造と結晶構造の両方で構成されているため、ガラス転移点(Tg)と融点の両方を持ちます。ガラス転移点(Tg)は、結晶性物質の融点よりも低くなります。 

ガラス転移点による物質の特定

ガラス転移点は、物質の定性にヒントを与えます。また、ガラス転移点(Tg)から、その物質を応用できる領域が決まってきます。たとえば自動車用ゴムタイヤは、通常の使用温度がガラス転移点を大幅に上回るため、柔らかくて延性があります。もしガラス転移点が使用温度よりも高ければ、道路舗装をグリップするのに必要な柔軟性が得られません。 

一方、使用温度がガラス転移点を下回るような高分子材料の使用例としては、プラスチック製のハンドル部品などが挙げられます。こうした製品の場合は、使用温度がガラス転移点より高いと柔らかくなりすぎてしまいます。 

各種の熱分析手法によるガラス転移点の決定 

示差走査熱量測定(DSC)
(ASTM E1356など)

DSC測定では、DSCカーブのベースラインに段差が生じることでガラス転移を観察でき(図参照)、開始温度、中間温度、曲線の変化、終了温度で評価されます。このステップの高さが ΔSpecific Heat Capacity (cp)Heat capacity is a material-specific physical quantity, determined by the amount of heat supplied to specimen, divided by the resulting temperature increase. The specific heat capacity is related to a unit mass of the specimen.cp (J/(g・K)) に相当します。測定手順は ASTM E1356-08 などに記載されています。DSCでは固体試料、粉末試料、液体試料を測定できます。 

What exactly is Glass Transition Temperature

The glass transition temperature, Tg, of a material characterizes the temperature range over which this glass transition occurs. It is always lower than the Melting Temperatures and EnthalpiesThe enthalpy of fusion of a substance, also known as latent heat, is a measure of the energy input, typically heat, which is necessary to convert a substance from solid to liquid state. The melting point of a substance is the temperature at which it changes state from solid (crystalline) to liquid (isotropic melt).melting temperature of the crystalline state of the material (if one exists). In the temperature range of the glass transition, polymers change from a hard and rigid state to a more flexible and supple state. Tg occurs in a temperature range over which the mobility of the polymer chains increases significantly.

Thermoplastics like polystyrene (PS) and poly(methyl methacrylate) (PMMA) are usually used below their glass transition temperature, i.e., in their glassy state.
Elastomers like polyisoprene and butadiene rubber (BR) are used above their Tg, where they are soft and supple.

ソルビトールのガラス転移点に対する水分の影響

応用例

ソルビトールのガラス転移点に対する水分の影響

ソルビトールはさまざまな菓子類、ダイエット食品、医薬品等で砂糖の代替品として使用されています。右のグラフでは、ソルビトールに含まれる水の割合が 10% になると、無水ソルビトールに比べてガラス転移点が約 24 K(中間温度)低下しています。どちらのソルビトール試料も、溶融状態から急冷したもので、アモルファスの状態を完全に維持しています(溶融したのはこのグラフに示す加熱以前の段階での状態です)。 

測定条件: 窒素雰囲気、 昇温速度 10K/min、アルミニウム試料容器+穴あきフタ、試料質量 約 12 mg±1 mg 

動的機械測定(DMA)
(ASTM 1640など)

DMA(例:ASTM E1640-09)は、非常に高い感度でガラス転移点を検出できる測定技法です(例: ASTM E1640-94)。これは示差走査熱量測定(DSC)(ISO 11357 2)を使用する方法に代わり、ガラス転移点を測定する手段です。DMA測定では貯蔵弾性率 E’ の湾曲変化の外挿開始点、損失弾性率 E’’ のピーク、tanδのピークで Tg を観察することができます。 

非強化ポリマーや充填材、発泡体、ゴム、接着剤、繊維強化プラスチック、繊維強化複合材等の測定に適しており、素材の形状に合わせて、曲げ/圧縮/引張など、各種の動的機械測定モードを適宜使用できます。 

ゴムのガラス転移

応用例

ゴムのガラス転移

動的機械測定(DMA)では試料に振動荷重を加えて、温度に依存した材料の粘弾性特性(貯蔵弾性率 E’、損失弾性率 E''、振動エネルギー)を記録し、弾性率と減衰値(tanδ)を求めます。 

図は水素化アクリロニトリルブタジエンゴム(HNBR)のガラス転移温度(Tg)を、DMA の引張モードで測定したグラフです。試験は、温度範囲 -90℃~40℃、昇温速度 2 K/min,周波数 1 Hz、振幅 ±20 µm という条件下でおこなわれました。貯蔵弾性率 E' の外挿開始点、損失弾性率 E'' のピーク、tanδ 曲線のピークは、いずれもこのゴム材料のガラス転移点 Tg に対応しています(それぞれの評価基準を適用)。

熱膨張測定(DIL)/ 熱機械測定(TMA)
 (ASTM E831など)

熱膨張計(DIL)や熱機械測定装置(TMA)での測定(いずれも ASTM E 473 - 11aに記載)では寸法変化の変曲点がガラス転移点に相当します(例: ASTM E1545)。ここではDIL/TMAの測定曲線における変曲の外挿開始点が記録され、温度の関数として表示されます。この値に再現性を持たせるためには、冷却 / 加熱の速度を定義する必要があります。たとえば ASTM E1545では TMAによるガラス転移点測定の方法が規定されています。 

熱膨張計によるガラス転移点の決定

応用例

熱膨張計によるガラス転移点の決定

図は、試料長 2 mm の天然ゴム試料を、温度範囲 -120℃~20℃、昇温速度 3K/min、ヘリウム雰囲気という条件下でDIL測定したグラフです。-62℃ の外挿開始点がガラス転移点(Tg)に相当します。ゴムのようなアモルファス物質では、これは可逆的な変化です。硬くて比較的脆い状態から、柔らかく伸縮性のある状態になります。