Analiza termomechaniczna

TMA 402 F1 /F3 Hyperion®

Thermomechanical Analyzer - Vertical Dilatometer 

The heart of the TMA 402 Hyperion® is a highly precise inductive displacement transducer (LVDT).

This technology has stood the test of time; it is also used for dilatometers and allows measurement of even the smallest of length changes, into the nanometer range (digital resolution of 0.125 nm).

Simultaneous measurement of force and displacement signal

The force operating on the sample is generated electromagnetically in the TMA 402 Hyperion®. This guarantees a quick response time for experiments with a changing load, e.g. tests on creep behavior. A highly sensitive force sensor (digital resolution < 0.01 mN) continuously measures the force exerted via the push rod and readjusts it automatically. This sets the TMA 402 Hyperion® apart from other instruments, which use only preset values.

Benefits for you

Determination of viscoelastic properties like Relaxation, Creep and Stress/Strain

The TMA 402 F3 /F1 Hyperion® now offers not only to keep the force constant and to measure the length change, but also to change the displacement and measure the corresponding force. One example where this is used is the StressStress is defined as a level of force applied on a sample with a well-defined cross section. (Stress = force/area). Samples having a circular or rectangular cross section can be compressed or stretched. Elastic materials like rubber can be stretched up to 5 to 10 times their original length.stress-relaxation test. This test stretches a sample by a specific amount at a defined temperature. During the test, the deformation is kept constant and the progression of the force is recorded. This force continuously decreases as a result of material relaxation. The stress-relaxation strength is ultimately defined by the residual stress measured after a defined exposure period. The data can be depicted graphically in a stress-time diagram. It is then possible to read off both the stress-relaxation behavior and the values for the relaxation rate and time.

Measurement on sensitive materials but also for higher stresses up to 4N 

The electronic control system allows users to set the force value in the mN-range. This enables testing even on sensitive materials such as thin fibers or films. For bigger geometries or higher stresses a force load up to 4 N can be applied using the premium TMA 402 F1 Hyperion® model. The force being exerted upon the sample can be altered via the software in a stepwise or linear fashion. This makes it especially simple to carry out tests such as creep.

Vacuum-tight thermostatic measuring system

The entire TMA 402 F1 /F3 Hyperion® measuring system is thermally stabilized via water-cooling. This ensures that the measurement will not be influenced by heat from the furnace or by temperature fluctuations in the local environment. All joints have a vacuum-tight design to allow measurements in a highly pure atmosphere or under vacuum. Pressures of less than 10-4 mbar can be achieved in the TMA 402 F1 /F3 Hyperion® with the use of a turbo molecular pump. In combination with the integrated mass flow controllers (MFC) for purge and protective gases (optional in the TMA 402 F3 Hyperion®), measurements in highly pure inert gas or in oxidizing atmospheres can be optimally controlled.

Request a Quote

Get a personalized offer now.

Request a Quote

Technical Data

Max. sample length
30 mm
Measuring range
± 2.5 mm
Dig. resolution (length)
0.125 nm

Force range
0.001 N to ± 4 N in steps of 0.2 mN
(F3 ± 3N)

Dig. resolution (force)
< 0.01 mN

Modulated force
Up to 1 Hz (only F1 )

Final vacuum pressure
< 10-4 mbar

Gas connections
Protective gas, 2 purge gases,
one independent purge gas

Temperature range
-150°C to 1550°C

Product Information

We do not only promise quality, but also individual consulting. Let us start your project together.

Request Information